5 years ago

Adhesion, Stiffness, and Instability in Atomically Thin MoS2 Bubbles

Adhesion, Stiffness, and Instability in Atomically Thin MoS2 Bubbles
Narasimha Boddeti, David Lloyd, Rong Long, J. Scott Bunch, Martin L. Dunn, Lauren Cantley, Xinghui Liu
We measured the work of separation of single and few-layer MoS2 membranes from a SiOx substrate using a mechanical blister test and found a value of 220 ± 35 mJ/m2. Our measurements were also used to determine the 2D Young’s modulus (E2D) of a single MoS2 layer to be 160 ± 40 N/m. We then studied the delamination mechanics of pressurized MoS2 bubbles, demonstrating both stable and unstable transitions between the bubbles’ laminated and delaminated states as the bubbles were inflated. When they were deflated, we observed edge pinning and a snap-in transition that are not accounted for by the previously reported models. We attribute this result to adhesion hysteresis and use our results to estimate the work of adhesion of our membranes to be 42 ± 20 mJ/m2.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01735

DOI: 10.1021/acs.nanolett.7b01735

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.