4 years ago

Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes

Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes
Phaedon Avouris, Damon B. Farmer, Yi-Hsien Lee, Po-Hsun Ho, George Tulevski, Abram L. Falk, Kuan-Chang Chiu, Shu-Jen Han
Low-dimensional plasmonic materials can function as high quality terahertz and infrared antennas at deep subwavelength scales. Despite these antennas’ strong coupling to electromagnetic fields, there is a pressing need to further strengthen their absorption. We address this problem by fabricating thick films of aligned, uniformly sized semiconducting carbon nanotubes and showing that their plasmon resonances are strong, narrow, and broadly tunable. With thicknesses ranging from 25 to 250 nm, our films exhibit peak attenuation reaching 70%, ensemble quality factors reaching 9, and electrostatically tunable peak frequencies by a factor of 2.3. Excellent nanotube alignment leads to the attenuation being 99% linearly polarized along the nanotube axis. Increasing the film thickness blueshifts the plasmon resonators down to peak wavelengths as low as 1.4 μm, a new near-infrared regime in which they can both overlap the S11 nanotube exciton energy and access the technologically important infrared telecom band.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02522

DOI: 10.1021/acs.nanolett.7b02522

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.