5 years ago

Composition–Structure–Activity Correlation of Platinum–Ruthenium Nanoalloy Catalysts for Ethanol Oxidation Reaction

Composition–Structure–Activity Correlation of Platinum–Ruthenium Nanoalloy Catalysts for Ethanol Oxidation Reaction
Jin Luo, Zakiya Skeete, Yazan Maswadeh, Chuan-Jian Zhong, Binay Prasai, Valeri Petkov, Hannah Cronk, Shiyao Shan, Yinguang Zhao
Understanding the evolution of the composition and atomic structure of nanoalloy catalysts in the ethanol oxidation reaction (EOR) is essential for the design of active and robust catalysts for direct ethanol fuel cells. This article describes a study of carbon-supported platinum–ruthenium electrocatalysts (PtRu/C) with different bimetallic compositions and their activities in the EOR, an important anode reaction in direct ethanol fuel cells (DEFCs). The study focused on establishing the relationship between the catalyst’s composition, atomic structure, and catalytic activity for the EOR. Ex situ and in situ synchrotron high-energy X-ray diffraction (HE-XRD) experiments coupled with atomic pair distribution function (PDF) analysis and in situ energy-dispersive X-ray (EDX) analysis were employed to probe the composition and structural evolution of the catalysts during the in situ EOR inside a membrane electrode assembly (MEA) in the fuel cell. The results revealed an intriguing composition–structure–activity relationship for the PtRu electrocatalysts under EOR experimental conditions. In particular, the alloy with a Pt/Ru ratio of ∼50:50 was found to exhibit a maximum EOR activity as a function of the bimetallic composition. This composition–activity relationship coincides with the relationship between the Pt interatomic distances and coordination numbers and the bimetallic composition. Notably, the catalytic activities of the PtRu electrocatalysts showed a significant improvement during the EOR, which can be related to atomic-level structural changes in the nanoalloys occurring during the EOR, as indicated by in situ HE-XRD/PDF/EDX data. The findings shed some new light on the mechanism of the ethanol oxidation reaction over bimetallic alloy nanocatalysts, which is important for the rational design and synthesis of active nanoalloy catalysts for DEFCs.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03901

DOI: 10.1021/acs.jpcc.7b03901

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.