5 years ago

CO gas sensitivity and its oxidation over TiO2 modified by PANI under UV irradiation at room temperature

CO gas sensitivity and its oxidation over TiO2 modified by PANI under UV irradiation at room temperature
A series of polyaniline–titanium dioxide (PANI/TiO2) nanocomposite film sensor were fabricated by an in-situ chemical oxidation polymerization of aniline at TiO2 (anatase) surface, and were evaluated the CO gas sensitivity under UV irradiation at room temperature. Although adding PANI into TiO2 seemed to weaken the photo-assisted conductivity of film sensor sample at N2 atmosphere, it enhanced the photo-assisted gas sensitivity to CO. Based on the chemical characterization results of PANI/TiO2 by FT-IR, Raman and XPS, it is proposed that the protonated N site in PANI chains (formed by TiO2 interacting with PANI) would promote the adsorption of CO, resulting in the more electrons from CO to PANI by the typical π–conjugated structures of benzenoid and quinonoid units and then to TiO2 by the hydrogen bonds (N⋯H⋯O) in the interface of PANI and TiO2. Moreover, the presence of H2O could enhance this photo-assisted gas sensitivity. Furthermore, the PANI/TiO2 powder sample also exhibited a higher activity of photocatalytic oxidizing CO than the pure TiO2 sample, indicating that the enhancement in the photo-assisted sensing response to CO would benefit the photocatalytic oxidation of CO over PANI/TiO2. This study not only provides a possible approach to develop a photo-assisted gas-sensitive material by introducing the structure of organic-inorganic hybrided nanocomposite, but also provides a possible method to estimate the photocatalytic activity of a semiconductor material by testing its photo-assisted sensitivity to the reactant gas.

Publisher URL: www.sciencedirect.com/science

DOI: S0926337317307294

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.