3 years ago

Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale

Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale
Andrey Chuvilin, Jesús Hernández-Saz, Iñaki López-Ferreño, Jose F. Gómez-Cortés, Sergio I. Molina, Maria L. Nó, Jose M. San Juan
Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L21 single crystals from a Cu–Al–Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = −2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

Publisher URL: http://dx.doi.org/10.1038/nnano.2017.91

DOI: 10.1038/nnano.2017.91

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.