4 years ago

Regulation of hetDNA Length during Mitotic Double-Strand Break Repair in Yeast

Regulation of hetDNA Length during Mitotic Double-Strand Break Repair in Yeast
Heteroduplex DNA (hetDNA) is a key molecular intermediate during the repair of mitotic double-strand breaks by homologous recombination, but its relationship to 5′ end resection and/or 3′ end extension is poorly understood. In the current study, we examined how perturbations in these processes affect the hetDNA profile associated with repair of a defined double-strand break (DSB) by the synthesis-dependent strand-annealing (SDSA) pathway. Loss of either the Exo1 or Sgs1 long-range resection pathway significantly shortened hetDNA, suggesting that these pathways normally collaborate during DSB repair. In addition, altering the processivity or proofreading activity of DNA polymerase δ shortened hetDNA length or reduced break-adjacent mismatch removal, respectively, demonstrating that this is the primary polymerase that extends both 3′ ends. Data are most consistent with the extent of DNA synthesis from the invading end being the primary determinant of hetDNA length during SDSA.

Graphical abstract



Guo et al. examine heteroduplex DNA double-strand break repair products. They find that both 5′ end resection pathways, as well as processive synthesis by Pol δ, are required to generate normal hetDNA profiles. Frequent processing of 3′ ends by Pol δ demonstrates that it is the major extender of both ends.

Publisher URL: www.sciencedirect.com/science

DOI: S1097276517305038

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.