5 years ago

A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence

A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence
Host defence peptides (HDPs) are evolutionarily conserved components of innate immunity. Human HDPs, produced by a variety of immune cells of hematopoietic and epithelial origin, are generally grouped into two families: beta structured defensins and variably-structured cathelicidins. We report the characterization of a very promising cryptic human HDP, here called GVF27, identified in 11-hydroxysteroid dehydrogenase-1 β-like protein. Methods Conformational analysis of GVF27 and its propensity to bind endotoxins were performed by NMR, Circular Dichroism, Fluorescence and Dynamic Light Scattering experiments. Crystal violet and WST-1 assays, ATP leakage measurement and colony counting procedures were used to investigate antimicrobial, anti-biofilm, cytotoxicity and hemolytic activities. Anti-inflammatory properties were evaluated by ELISA. Results GVF27 possesses significant antibacterial properties on planktonic cells and sessile bacteria forming biofilm, as well as promising dose dependent abilities to inhibit attachment or eradicate existing mature biofilm. It is unstructured in aqueous buffer, whereas it tends to assume a helical conformation in mimic membrane environments as well as it is able to bind lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Notably it is not toxic towards human and murine cell lines and triggers a significant innate immune response by attenuating expression levels of pro-inflammatory interleukins and release of nitric oxide in LPS induced macrophages. Conclusion Human GVF27 may offer significant advantages as leads for the design of human-specific therapeutics. General significance Human cryptic host defence peptides are naturally no immunogenic and for this they are a real alternative for solving the lack of effective antibiotics to control bacterial infections.

Publisher URL: www.sciencedirect.com/science

DOI: S0304416517301344

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.