5 years ago

Tuning underwater adhesion with cation–π interactions

Tuning underwater adhesion with cation–π interactions
J. Herbert Waite, Wei Wei, Thomas R. Cristiani, Bradley F. Chmelka, Alex M. Schrader, Howard A. Dobbs, Jacob N. Israelachvili, Matthew Idso, Matthew A. Gebbie
Cation–π interactions drive the self-assembly and cohesion of many biological molecules, including the adhesion proteins of several marine organisms. Although the origin of cation–π bonds in isolated pairs has been extensively studied, the energetics of cation–π-driven self-assembly in molecular films remains uncharted. Here we use nanoscale force measurements in combination with solid-state NMR spectroscopy to show that the cohesive properties of simple aromatic- and lysine-rich peptides rival those of the strong reversible intermolecular cohesion exhibited by adhesion proteins of marine mussel. In particular, we show that peptides incorporating the amino acid phenylalanine, a functional group that is conspicuously sparing in the sequences of mussel proteins, exhibit reversible adhesion interactions significantly exceeding that of analogous mussel-mimetic peptides. More broadly, we demonstrate that interfacial confinement fundamentally alters the energetics of cation–π-mediated assembly: an insight that should prove relevant for diverse areas, which range from rationalizing biological assembly to engineering peptide-based biomaterials.

Publisher URL: http://dx.doi.org/10.1038/nchem.2720

DOI: 10.1038/nchem.2720

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.