3 years ago

Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions

Changwon Jang, Sungjae Yun, Hae-Jeong Park, Dongha Lee

by Dongha Lee, Sungjae Yun, Changwon Jang, Hae-Jeong Park

This study proposes a method for classifying event-related fMRI responses in a specialized setting of many known but few unknown stimuli presented in a rapid event-related design. Compared to block design fMRI signals, classification of the response to a single or a few stimulus trial(s) is not a trivial problem due to contamination by preceding events as well as the low signal-to-noise ratio. To overcome such problems, we proposed a single trial-based classification method of rapid event-related fMRI signals utilizing sparse multivariate Bayesian decoding of spatio-temporal fMRI responses. We applied the proposed method to classification of memory retrieval processes for two different classes of episodic memories: a voluntarily conducted experience and a passive experience induced by watching a video of others’ actions. A cross-validation showed higher classification performance of the proposed method compared to that of a support vector machine or of a classifier based on the general linear model. Evaluation of classification performances for one, two, and three stimuli from the same class and a correlation analysis between classification accuracy and target stimulus positions among trials suggest that presenting two target stimuli at longer inter-stimulus intervals is optimal in the design of classification experiments to identify the target stimuli. The proposed method for decoding subject-specific memory retrieval of voluntary behavior using fMRI would be useful in forensic applications in a natural environment, where many known trials can be extracted from a simulation of everyday tasks and few target stimuli from a crime scene.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0182657

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.