5 years ago

Nanoscale Probing of Elastic–Electronic Response to Vacancy Motion in NiO Nanocrystals

Nanoscale Probing of Elastic–Electronic Response to Vacancy Motion in NiO Nanocrystals
Jivika Sullaphen, Sergei V. Kalinin, Rama K. Vasudevan, Nagarajan Valanoor, Jeffrey Cheung, Fran Kurnia, Xuan Cheng
Measuring the diffusion of ions and vacancies at nanometer length scales is crucial to understanding fundamental mechanisms driving technologies as diverse as batteries, fuel cells, and memristors; yet such measurements remain extremely challenging. Here, we employ a multimodal scanning probe microscopy (SPM) technique to explore the interplay between electronic, elastic, and ionic processes via first-order reversal curve IV measurements in conjunction with electrochemical strain microscopy (ESM). The technique is employed to investigate the diffusion of oxygen vacancies in model epitaxial nickel oxide (NiO) nanocrystals with resistive switching characteristics. Results indicate that opening of the ESM hysteresis loop is strongly correlated with changes to the resonant frequency, hinting that elastic changes stem from the motion of oxygen (or cation) vacancies in the probed volume of the SPM tip. These changes are further correlated to the current measured on each nanostructure, which shows a hysteresis loop opening at larger (∼2.5 V) voltage windows, suggesting the threshold field for vacancy migration. This study highlights the utility of local multimodal SPM in determining functional and chemical changes in nanoscale volumes in nanostructured NiO, with potential use to explore a wide variety of materials including phase-change memories and memristive devices in combination with site-correlated chemical imaging tools.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03826

DOI: 10.1021/acsnano.7b03826

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.