5 years ago

Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures

Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures
Alejandro Manjavacas, Alessandro Alabastri, Eugenio Calandrini, Andrea Toma, Francesco De Angelis, Mario Malerba, Remo Proietti Zaccaria
Heat dissipation in a plasmonic nanostructure is generally assumed to be ruled only by its own optical response even though also the temperature should be considered for determining the actual energy-to-heat conversion. Indeed, temperature influences the optical response of the nanostructure by affecting its absorption efficiency. Here, we show both theoretically and experimentally how, by properly nanopatterning a metallic surface, it is possible to increase or decrease the light-to-heat conversion rate depending on the temperature of the system. In particular, by borrowing the concept of matching condition from the classical antenna theory, we first analytically demonstrate how the temperature sets a maximum value for the absorption efficiency and how this quantity can be tuned, thus leading to a temperature-controlled optical heat dissipation. In fact, we show how the nonlinear dependence of the absorption on the electron–phonon damping can be maximized at a specific temperature, depending on the system geometry. In this regard, experimental results supported by numerical calculations are presented, showing how geometrically different nanostructures can lead to opposite dependence of the heat dissipation on the temperature, hence suggesting the fascinating possibility of employing plasmonic nanostructures to tailor the light-to-heat conversion rate of the system.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02131

DOI: 10.1021/acs.nanolett.7b02131

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.