5 years ago

Self-propelled supramolecular nanomotors with temperature-responsive speed regulation

Self-propelled supramolecular nanomotors with temperature-responsive speed regulation
Xiaofeng Sui, Daniela A. Wilson, Paul B. White, Jan C. M. van Hest, Fei Peng, Yingfeng Tu, Yongjun Men
Self-propelled catalytic micro- and nanomotors have been the subject of intense study over the past few years, but it remains a continuing challenge to build in an effective speed-regulation mechanism. Movement of these motors is generally fully dependent on the concentration of accessible fuel, with propulsive movement only ceasing when the fuel consumption is complete. Here we report a demonstration of control over the movement of self-assembled stomatocyte nanomotors via a molecularly built, stimulus-responsive regulatory mechanism. A temperature-sensitive polymer brush is chemically grown onto the nanomotor, whereby the opening of the stomatocytes is enlarged or narrowed on temperature change, which thus controls the access of hydrogen peroxide fuel and, in turn, regulates movement. To the best of our knowledge, this represents the first nanosized chemically driven motor for which motion can be reversibly controlled by a thermally responsive valve/brake. We envision that such artificial responsive nanosystems could have potential applications in controllable cargo transportation.

Publisher URL: http://dx.doi.org/10.1038/nchem.2674

DOI: 10.1038/nchem.2674

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.