3 years ago

Polymorphism of the Blocking TiO2 Layer Deposited on F:SnO2 and Its Influence on the Interfacial Energetic Alignment

Polymorphism of the Blocking TiO2 Layer Deposited on F:SnO2 and Its Influence on the Interfacial Energetic Alignment
Andreas Klein, Daniel Bellet, Shan-Ting Zhang, Odette Chaix-Pluchery, Hervé Roussel, David Muñoz-Rojas, Michel Langlet
As widely employed in dye-sensitized, perovskite, and quantum-dot solar cells, the interface between F-doped SnO2 (FTO) and blocking TiO2 (b-TiO2) is essential in understanding the working principles of these types of solar cells. In this work, we have deposited b-TiO2 layers using a simple sol–gel method. While the b-TiO2 layers deposited on Si (100) wafers form pure anatase polymorph, we have found that the rutile structure of the FTO substrates consistently induces the b-TiO2 layers to crystallize into mixed anatase and rutile polymorphs; the same is observed on rutile RuO2 substrates. This indicates that the rutile structural similarity favors the formation of rutile polymorph in b-TiO2 layers; due to the coexistence of both anatase and rutile polymorphs, the interface of FTO/b-TiO2 is essentially inhomogeneous. We also show that the amount of rutile polymorph present in the b-TiO2 layer is a function of layer thickness, with rutile polymorph dominating in thin b-TiO2 layers. As a result, the energetic alignment at the FTO/b-TiO2 interface in general still favors the charge transport. This is confirmed by directly probing an ultrathin (<10 nm) b-TiO2 layer using X-ray photoelectron spectroscopy (XPS). We emphasize that the rutile structure of FTO substrate plays a significant role in determining the polymorph of successively deposited b-TiO2 layer, which in turn affects the energetic alignment with FTO electrodes and mesoporous nanocrystalline TiO2, and ultimately the performance of solar devices.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04893

DOI: 10.1021/acs.jpcc.7b04893

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.