3 years ago

Use of MALDI-MS Combined with Differential Hydrogen–Deuterium Exchange for Semiautomated Protein Global Conformational Screening

Use of MALDI-MS Combined with Differential Hydrogen–Deuterium Exchange for Semiautomated Protein Global Conformational Screening
Nicole Canfield, Alexey A. Makarov, Alexander S. Chin, Timothy A. Rhodes, Heather Wang, Gregory F. Pirrone
Matrix-assisted laser desorption/ionization (MALDI) coupled with a time-of-flight (TOF) mass-spectrometry (MS) detector is acknowledged to be very useful for analysis of biological molecules. At the same time, hydrogen–deuterium exchange (HDX) is a well-known technique for studying protein higher-order structure. However, coupling MALDI with HDX has been challenging because of undesired back-exchange reactions during analysis. In this report, we survey an approach that utilizes MALDI coupled with an automated sample preparation to compare global conformational changes of proteins under different solution conditions using differential HDX. A nonaqueous matrix was proposed for MALDI sample preparation to minimize undesirable back-exchange. An automated experimental setup based on the use of a liquid-handling robot and automated data acquisition allowed for tracking protein conformational changes as a difference in the number of protons exchanged to deuterons at specified solution conditions. Experimental time points to study the deuteration-labeling kinetics were obtained in a fully automated manner. The use of a nonaqueous matrix solution allowed experimental error to be minimized to within 1% RSD. We applied this newly developed MALDI-HDX workflow to study the effect of several common excipients on insulin folding stability. The observed results were corroborated by literature data and were obtained in a high-throughput and automated manner. The proposed MALDI-HDX approach can also be applied in a high-throughput manner for batch-to-batch higher-order structure comparison, as well as for the optimization of protein chemical modification reactions.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01590

DOI: 10.1021/acs.analchem.7b01590

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.