3 years ago

Design, Synthesis, and Evaluation of New Selective NM23-H2 Binders as c-MYC Transcription Inhibitors via Disruption of the NM23-H2/G-Quadruplex Interaction

Design, Synthesis, and Evaluation of New Selective NM23-H2 Binders as c-MYC Transcription Inhibitors via Disruption of the NM23-H2/G-Quadruplex Interaction
Shuo-Bin Chen, Chan Shan, Jia-Heng Tan, Qi-Kun Yin, Zhou-Li Huang, Ding Li, Zhi-Shu Huang, Tian-Miao Ou, Chen-Xi Wang, Yu-Qing Wang, Lian-Quan Gu
c-MYC is one of the important human proto-oncogenes, and transcriptional factor NM23-H2 can activate c-MYC transcription by recognizing the G-quadruplex in the promoter of the gene. Small molecules that inhibit c-MYC transcription by disrupting the NM23-H2/G-quadruplex interaction might be a promising strategy for developing selective anticancer agents. In recent studies, we developed a series of isaindigotone derivatives, which can bind to G-quadruplex and NM23-H2, thus down-regulating c-MYC ( J. Med. Chem. 2017, 60, 1292−1308). Herein, a series of novel isaindigotone derivatives were designed, synthesized, and screened for NM23-H2 selective binding ligands. Among them, compound 37 showed a high specific binding affinity to NM23-H2, effectively disrupting the interaction of NM23-H2 with G-quadruplex, and it strongly down-regulated c-MYC transcription. Furthermore, 37 induced cell cycle arrest and apoptosis, and it exhibited good tumor growth inhibition in a mouse xenograft model. This work provides a new strategy to modulate c-MYC transcription for the development of selective anticancer drugs.

Publisher URL: http://dx.doi.org/10.1021/acs.jmedchem.7b00421

DOI: 10.1021/acs.jmedchem.7b00421

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.