5 years ago

Mechanism of ethylene oxychlorination over ruthenium oxide

Mechanism of ethylene oxychlorination over ruthenium oxide
The oxychlorination of ethylene is an industrially relevant process within the manufacture of polyvinyl chloride (PVC). Although RuO2 is the best performing catalyst for the Deacon process (4HCl+O2 2H2O+2Cl2), experiments demonstrate a modest activity in the selective oxychlorination to vinyl chloride, favouring oxidation and polychlorinated saturated products. From the computational modelling three main contributions are found to control the performance: (i) coverage effects that alter the configuration of intermediates; (ii) the monodimensional arrangement of the active sites, in which the reaction of coadsorbed species works on a “first-come, first-served” basis; and (iii) the high reactivity of the oxygen species. Competition between oxidation and chlorination processes results in variable selectivity, depending on the reaction conditions (particularly temperature and reactant partial pressures), which influence the surface composition. From the analysis of the complex reaction network, the essential requirements for a good oxychlorination catalyst are formulated.

Publisher URL: www.sciencedirect.com/science

DOI: S0021951717302567

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.