3 years ago

Separator for lithium-sulfur battery based on polymer blend membrane

Separator for lithium-sulfur battery based on polymer blend membrane
In this work we report a novel way of reducing the polysulfide shuttle in lithium-sulfur batteries by a new separator material. Polyvinylsulfate potassium salt (PVSK) as polymeric additive is introduced into a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix membrane to improve the battery performance. PVSK is expected to lower the polysulfide mobility due to interaction with the sulfonic group. PVdF-HFP/PVSK blend membranes are prepared and an UV/Vis polysulfide diffusion test clearly demonstrates the positive effect of PVSK. Electrochemical testing reveals a significant improvement of cycling stability up to more than 200 cycles. In addition, the effect of separator porosity to the polysulfide shuttle is investigated with PVdF-HFP membranes of different porosity. A simple polysulfide diffusion test and potentiostatic charge/discharge cycling clearly demonstrate that low separator porosity is favorable in a lithium-sulfur cell.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317309722

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.