4 years ago

Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction

Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction
Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment – including high toxicity, high cost and parasite resistance – make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[RuII2-O2CR)(dppm)2]PF6, with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1–3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC50 values ranged from 7.52–12.59μM (complex 1); 0.70–3.28μM (complex 2) and 0.52–1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes.

Publisher URL: www.sciencedirect.com/science

DOI: S0162013416305359

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.