5 years ago

Control over differentiation of a metastable supramolecular assembly in one and two dimensions

Control over differentiation of a metastable supramolecular assembly in one and two dimensions
Tsuneaki Sakurai, Shu Seki, Masayuki Takeuchi, Kazunori Sugiyasu, Tomoya Fukui, Shinnosuke Kawai, Yoshitaka Matsushita, Takeshi Yasuda, Satoko Fujinuma
Molecular self-assembly under kinetic control is expected to yield nanostructures that are inaccessible through the spontaneous thermodynamic process. Moreover, time-dependent evolution, which is reminiscent of biomolecular systems, may occur under such out-of-equilibrium conditions, allowing the synthesis of supramolecular assemblies with enhanced complexities. Here we report on the capacity of a metastable porphyrin supramolecular assembly to differentiate into nanofibre and nanosheet structures. Mechanistic studies of the relationship between the molecular design and pathway complexity in the self-assembly unveiled the energy landscape that governs the unique kinetic behaviour. Based on this understanding, we could control the differentiation phenomena and achieve both one- and two-dimensional living supramolecular polymerization using an identical monomer. Furthermore, we found that the obtained nanostructures are electronically distinct, which illustrates the pathway-dependent material properties.

Publisher URL: http://dx.doi.org/10.1038/nchem.2684

DOI: 10.1038/nchem.2684

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.