3 years ago

In situ electrical resistance and X-ray tomography study of copper–tin polymer composites during thermal annealing

In situ electrical resistance and X-ray tomography study of copper–tin polymer composites during thermal annealing
Dilworth Parkinson, Qing Yang, Richard Lloyd, Min Zheng, Megan Hoarfrost Beers, Ting Gao
In situ electrical conductivity and X-ray tomography experiments are conducted on a conductive polymer composite containing polyvinylidene fluoride (PVDF) copolymer, copper (Cu), and tin (Sn) during thermal annealing. During annealing, the electrical resistivity drops by an order of magnitude, while X-ray tomography, electron microscopy, and spectroscopy results show increasingly homogeneous dispersion of Sn in the conductive filler network, accompanied by the formation of Cu–Sn intermetallic around Cu and Sn particles. This study provides detailed insight into the morphological origins of the beneficial effect of thermal annealing on the electrical properties of conductive composites containing low melting metal fillers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45399.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45399

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.