3 years ago

Heterogeneous hydrolytic degradation of poly(lactic-co-glycolic acid) microspheres: Mathematical modeling

Heterogeneous hydrolytic degradation of poly(lactic-co-glycolic acid) microspheres: Mathematical modeling
Ignacio Helbling, Juan Pesoa, Julio Luna, Diana Estenoz, Carlos Busatto
A new mathematical model for the prediction of the heterogeneous hydrolytic degradation of poly(D,L-lactide-co-glycolide) (PLGA)-based microspheres was developed. The model takes into account the autocatalytic effect of carboxylic groups and polymer composition on the degradation rate. It is based on mass balances for the different species, considering the kinetic and mass transport phenomena involved. The model estimates the evolution of average molecular weight, mass loss, and morphological change of the particles during degradation, and it was validated with novel experimental data. Theoretical predictions are in agreement with the hydrolysis data of PLGA microspheres (error values less than 5%). The model is able to predict the effect of particle size and molecular weight on the degradation of PLGA-based microspheres and estimates the morphological changes of the particles due to the autocatalytic effect. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45464.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45464

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.