5 years ago

Intramolecular interactions in sterically crowded hydrocarbon molecules

Intramolecular interactions in sterically crowded hydrocarbon molecules
Oinam Romesh Meitei, Andreas Heßelmann
A molecular fragmentation method has been used to analyze the intramolecular interactions in the three molecules coupled diamantane, hexaphenylethane, and all-meta-tert-butyl substituted hexaphenylethane. The significance of these systems lies in the fact, that steric crowding effects enable a stabilization of the central carbon bond that possesses an extended length (1.6 to 1.7 Å) beyond conventional carbon-carbon bonds due to the steric repulsion of the attached hydrocarbon groups. The total stability of these molecules therefore depends on a delicate balance between attractive interaction forces on the one hand and on repulsive forces on the other hand. We have quantified the different interaction energy contributions using symmetry-adapted perturbation theory based on a density functional theory description of the monomers. It has been found that the attractive dispersion interactions increase more strongly with the level of crowding in the systems than the counteracting exchange interactions. This shows that steric crowding effects can have a significant impact on the structure and stability of large and branched molecules. © 2017 Wiley Periodicals, Inc. The sum of the attractive interaction energy contributions (electrostatic, induction, and dispersion) overweighs the sum of the repulsive (exchange) contributions if the level of steric crowding in the molecule increases.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.24908

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.