5 years ago

Dynamic remodeling of the dynamin helix during membrane constriction [Biophysics and Computational Biology]

Dynamic remodeling of the dynamin helix during membrane constriction [Biophysics and Computational Biology]
Aurelien Roux, Lorena Redondo–Morata, Nicolas Chiaruttini, Adai Colom, Simon Scheuring

Dynamin is a dimeric GTPase that assembles into a helix around the neck of endocytic buds. Upon GTP hydrolysis, dynamin breaks these necks, a reaction called membrane fission. Fission requires dynamin to first constrict the membrane. It is unclear, however, how dynamin helix constriction works. Here we undertake a direct high-speed atomic force microscopy imaging analysis to visualize the constriction of single dynamin-coated membrane tubules. We show GTP-induced dynamic rearrangements of the dynamin helix turns: the average distances between turns reduce with GTP hydrolysis. These distances vary, however, over time because helical turns were observed to transiently pair and dissociate. At fission sites, these cycles of association and dissociation were correlated with relative lateral displacement of the turns and constriction. Our findings show relative longitudinal and lateral displacements of helical turns related to constriction. Our work highlights the potential of high-speed atomic force microscopy for the observation of mechanochemical proteins onto membranes during action at almost molecular resolution.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.