5 years ago

Heritability analysis with repeat measurements and its application to resting-state functional connectivity [Neuroscience]

Heritability analysis with repeat measurements and its application to resting-state functional connectivity [Neuroscience]
Tian Ge, Jordan W. Smoller, Randy L. Buckner, Mert R. Sabuncu, Avram J. Holmes

Heritability, defined as the proportion of phenotypic variation attributable to genetic variation, provides important information about the genetic basis of a trait. Existing heritability analysis methods do not discriminate between stable effects (e.g., due to the subject’s unique environment) and transient effects, such as measurement error. This can lead to misleading assessments, particularly when comparing the heritability of traits that exhibit different levels of reliability. Here, we present a linear mixed effects model to conduct heritability analyses that explicitly accounts for intrasubject fluctuations (e.g., due to measurement noise or biological transients) using repeat measurements. We apply the proposed strategy to the analysis of resting-state fMRI measurements—a prototypic data modality that exhibits variable levels of test–retest reliability across space. Our results reveal that the stable components of functional connectivity within and across well-established large-scale brain networks can be considerably heritable. Furthermore, we demonstrate that dissociating intra- and intersubject variation can reveal genetic influence on a phenotype that is not fully captured by conventional heritability analyses.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.