3 years ago

Controllable Dynamic Zigzag Pattern Formation in a Soft Helical Superstructure

Controllable Dynamic Zigzag Pattern Formation in a Soft Helical Superstructure
Rafael S. Zola, Zhi-gang Zheng, Yannian Li, Ling Wang, Hari Krishna Bisoyi, Quan Li, Timothy J. Bunning
Zigzag pattern formation is a common and important phenomenon in nature serving a multitude of purposes. For example, the zigzag-shaped edge of green leaves boosts the transportation and absorption of nutrients. However, the elucidation of this complicated shape formation is challenging in fluid mechanics and soft condensed matter systems. Herein, a dynamically reconfigurable zigzag pattern deformation of a soft helical superstructure is demonstrated in a photoresponsive self-organized cholesteric liquid crystal superstructure under the simultaneous influence of an applied electric field and light irradiation. The zigzag-shaped pattern can not only be generated and terminated repeatedly on demand, but can also be easily manipulated by alternating irradiation of ultraviolet and visible light while under the influence of a sustained electric field. This unique behavior results from a delicate balance among the variable experimental parameters. The evolution of the zigzag-shaped pattern is successfully modeled by numerical simulations and has been monitored through diffraction of a probe laser. Interestingly, this fascinating zigzag-shaped pattern yields crescent-shaped diffraction pattern. The reversibly controllable dynamic zigzag pattern could enable the fabrication of novel photonic devices and architectures, besides greatly advancing the fundamental understanding of temporal behavior of ordered soft materials under combined stimuli. Controllable dynamic zigzag-shaped pattern formation in a photoresponsive soft self-organized helical superstructure is accomplished via the coupled stimuli effect of electric field and light, which has enabled a unique diffraction pattern not found before.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701903

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.