4 years ago

A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell

A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell
Shaoqing Zhang, Shunmian Lu, Wallace C. H. Choy, Hong Lin, Jianhui Hou
The all-solution-processed switchable interconnecting layer (ICL) for both inverted and normal tandem organic solar cells (OSCs) is reported for the first time here. The fundamental challenges in the literature arise from mixing multiple functionalities into a single layer. For a widely used ICL composed of an electron transport layer (ETL)/a hole transport layer (HTL), ETL needs not only to efficiently extract electrons from an underneath photoactive layer, but also to fulfill optical, mechanical, chemical and electrical requirements to function as effective tunneling junction ICL with HTL atop. Taking on multiple functionalities for a single ETL makes ETL in ICL highly coupled and difficult to be replaced. This is also the case for HTL. Here, this study demonstrates an all-solution-processed switchable ICL, ETL/recombination layer (RL)/HTL and HTL/RL/ETL, for both normal and inverted tandem OSCs. In switchable ICL, ETL and HTL simply serve as carrier transport layers as they did in single OSCs. Electrical recombination, mechanical protection and chemical separation functionalities are realized by RL alone. This strategy shifts the views of ICL for tandem OSCs from conventionally complicated ETL/HTL tunneling junction ICL, where both ETL and HTL play several different roles, towards simplified ICL where ETL and HTL play a distinct decoupled role, advancing ICL for more adaptable tandem OSCs. An all-solution-processed switchable interconnecting layer (ICL) for tandem organic solar cells (OSCs) is demonstrated the first time with hole transporting layer (HTL)/recombination layer (RL)/electron transporting layer (ETL) and its counterpart ETL/RL/HTL for inverted and normal structure configuration respectively. This three-layered switchable ICL controls the complexity of fabricating tandem OSCs to be as simple as single OSCs.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201701164

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.