3 years ago

Ultraviolet–Visible Chiroptical Activity of Aluminum Nanostructures

Ultraviolet–Visible Chiroptical Activity of Aluminum Nanostructures
Junjun Liu, Zhifeng Huang, Han Zhang, Jianfang Wang, Lin Yang
Ultraviolet (UV)-resonant metals (e.g., aluminum) typically have low melting point to cause a fabrication difficulty in helical sculpture to generate plasmons with chiroptical activity in the UV region. In this work, using glancing angle deposition (GLAD), two new methods are devised to generate crystalline chiral Al nanostructures that have stable chiroptical response in the UV–visible region originating from intrinsic helical structures. One approach involves fast substrate rotation during GLAD to fabricate Al nanoparticles (AlNPs) with hidden helicity; another is to deposit an achiral Al thin film on a host of plasmonic chiral NPs, such that the helical structures are duplicated from the chiral host to the achiral guest of Al nanocappings. The host@guest helicity duplication is a new GLAD methodology to generate chiroptically active plasmons, which can be generally adapted to diverse plasmonic metals for tailoring plasmonic chiroptical activity flexibly in the UV–visible region. More importantly, this work offers those two new methods to generate UV-active plasmonic chiral substrates, which can markedly enhance chiroptical activity of biomolecules. It would open a door to develop surface-enhanced chiroptical spectroscopies for sensitively monitoring stereobiochemical information, which is of prominent interest in understanding a wide range of homochirality-determined biological phenomena. Chiral aluminum nanostructures with strong, stable chiroptical activity in the UV–visible region are fabricated by glancing angle deposition. The chiroptical activity originates from the hidden helicity or helicity duplication from the chiral host, and the latter can be generally adapted to diverse plasmonic metals.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201701112

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.