5 years ago

Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter

E Wu, Chengda Pan, Yingxian Xue, Botao Wu, Youying Rong, Chengjie Ding, Heping Zeng, Qiang Ma
Plasmonic enhancement induced by metallic nanostructures is an effective strategy to improve the upconversion efficiency of lanthanide-doped nanocrystals. It is demonstrated that plasmonic enhancement of the upconversion luminescence (UCL) of single NaYF4:Yb3+/Er3+/Mn2+ nanocrystal can be tuned by tailoring scattering and absorption cross sections of gold nanorods, which is synthesized wet chemically. The assembly of the single gold nanorod and single upconversion nanocrystal is achieved by the atomic force microscope probe manipulation. By selecting two kinds of gold nanorods with similar longitudinal surface plasmon resonance wavelength but different diameters (27.3 and 46.7 nm), which extinction spectra are separately dominant by the absorption and scattering, the maximum UCL enhancement by a factor of 110 is achieved with the 46.7 nm-diameter gold nanorod, while it is 19 for the nanorod with the diameter of 27.3 nm. Such strong enhancement with the larger gold nanorod is due to stronger scattering ability and greater extent of the near-field enhancement. The enhanced UCL shows a strong dependence on the excitation polarization relative to the nanorod long axis. Time-resolved measurements and finite-difference time-domain simulations unveil that both excitation and emission processes of UCL are accelerated by the nanorod plasmonic effect. Plasmonic enhancement of upconversion luminescence in single nanocrystal–Au nanorod dimers formed by atomic force microscope probe manipulation is demonstrated. By tailoring diameters of the nanorods with the similar plasmonic resonant wavelength to make scattering dominate the nanorod extinction, 110-fold luminescence enhancement is achieved. Experimental and theoretical analyses indicate that excitation and emission processes of upconversion are all accelerated by nanorod plasmonic effect.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201701155

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.