5 years ago

Evidence from Fermi surface analysis for the low-temperature structure of lithium [Physics]

Evidence from Fermi surface analysis for the low-temperature structure of lithium [Physics]
Weizhao Cai, Roald Hoffmann, Shanti Deemyad, N. W. Ashcroft, Sabri F. Elatresh, Stanimir A. Bonev

The low-temperature crystal structure of elemental lithium, the prototypical simple metal, is a several-decades-old problem. At 1 atm pressure and 298 K, Li forms a body-centered cubic lattice, which is common to all alkali metals. However, a low-temperature phase transition was experimentally detected to a structure initially identified as having the 9R stacking. This structure, proposed by Overhauser in 1984, has been questioned repeatedly but has not been confirmed. Here we present a theoretical analysis of the Fermi surface of lithium in several relevant structures. We demonstrate that experimental measurements of the Fermi surface based on the de Haas–van Alphen effect can be used as a diagnostic method to investigate the low-temperature phase diagram of lithium. This approach may overcome the limitations of X-ray and neutron diffraction techniques and makes possible, in principle, the determination of the lithium low-temperature structure (and that of other metals) at both ambient and high pressure. The theoretical results are compared with existing low-temperature ambient pressure experimental data, which are shown to be inconsistent with a 9R phase for the low-temperature structure of lithium.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.