5 years ago

Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy

Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy
Tejal A. Desai, Qizhi Tang, Karina Villanueva, Audrey V. Parent, Daniel A. Bernards, Susanna K. Elledge, Holger A. Russ, Gaetano Faleo, Matthias Hebrok, Jessica L. Allen, Ryan Chang
Encapsulation of human embryonic stem-cell-differentiated beta cell clusters (hES-βC) holds great promise for cell replacement therapy for the treatment of diabetics without the need for chronic systemic immune suppression. Here, we demonstrate a nanoporous immunoprotective polymer thin film cell encapsulation device that can exclude immune molecules while allowing exchange of oxygen and nutrients necessary for in vitro and in vivo stem cell viability and function. Biocompatibility studies show the device promotes neovascular formation with limited foreign body response in vivo. The device also successfully prevented teratoma escape into the peritoneal cavity of mice. Long-term animal studies demonstrate evidence of engraftment, viability, and function of cells encapsulated in the device after 6 months. Finally, in vivo study confirms that the device was able to effectively immuno-isolate cells from the host immune system.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b01239

DOI: 10.1021/acsnano.7b01239

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.