5 years ago

A DNA Walker as a Fluorescence Signal Amplifier

A DNA Walker as a Fluorescence Signal Amplifier
Dongfang Wang, Philip Tinnefeld, Guillermo Acuna, Carolin Vietz, Birka Lalkens, Tim Schröder
Sensing nucleic acids typically involves the recognition of a specific sequence and reporting by, for example, a fluorogenic reaction yielding one activated dye molecule per detected nucleic acid. Here, we show that after binding to a DNA origami track a bound DNA target (a “DNA walker”) can release the fluorescence of many molecules by acting as the catalyst of an enzymatic nicking reaction. As the walking kinetics sensitively depends on the walker sequence, the resulting brightness distribution of DNA origamis is a sequence fingerprint with single-nucleotide sensitivity. Using Monte Carlo simulations, we rationalize that the random self-avoiding walk is mainly terminated when steps to nearest neighbors are exhausted. Finally, we demonstrate that the DNA walker is also active in a plasmonic hotspot for fluorescence enhancement, indicating the potential of combining different amplification mechanisms enabled by the modularity of DNA nanotechnology.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01829

DOI: 10.1021/acs.nanolett.7b01829

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.