3 years ago

PtNPs as Scaffolds to Regulate Interenzyme Distance for Construction of Efficient Enzyme Cascade Amplification for Ultrasensitive Electrochemical Detection of MMP-2

PtNPs as Scaffolds to Regulate Interenzyme Distance for Construction of Efficient Enzyme Cascade Amplification for Ultrasensitive Electrochemical Detection of MMP-2
Ya-Li Yuan, Ya-Qin Chai, Ruo Yuan, Bei-Bei Kou
The high catalytic efficiency of enzyme cascade reaction mainly depends on optimal interenzyme distance regulated by the special scaffolds. In this work, the rigid PtNPs with different sizes were employed as scaffolds to regulate interenzyme distance for efficient enzyme cascade amplification to construct electrochemical biosensor for sensitive detection of matrix metalloproteinases-2 (MMP-2), which overcame the drawbacks of instable construction and sophisticated preparation induced by conventional scaffolds such as metal–organic frameworks (MOFs), DNA nanostructures. Here, cucurbit[7]uril functionalized PtNPs (CB[7]@PtNPs) was utilized to load ferrocene (Fc)-labeled horseradish peroxidase (HRP) and glucose oxidase (GOx) via host–guest interaction between Fc and CB[7], respectively, resulting in the formation of a stable three-dimensional netlike structure containing amounts of enzymes. Interestingly, the enzyme cascade reaction regulated by 10 nm PtNPs as scaffold showed highly catalytic efficiency. Meanwhile, the PtNPs could also serve as catalyst to accelerate the enzyme cascade reaction with further enhanced catalytic efficiency. As a result, the proposed biosensor exhibited excellent sensitivity with a wide linear range of 0.1 pg·mL–1 to 20 ng·mL–1 and a detection limit of 0.03 pg·mL–1 for MMP-2. Such a strategy opened a new avenue for adopting metal nanoparticles to regulate interenzyme distance for efficient enzyme cascade amplification, thus providing a universal and easy operating method for sensitively detecting various targets such as DNA, metal ion, and protein.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02210

DOI: 10.1021/acs.analchem.7b02210

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.