3 years ago

Electrochemical CO Oxidation at Platinum on Carbon Studied through Analysis of Anomalous in Situ IR Spectra

Electrochemical CO Oxidation at Platinum on Carbon Studied through Analysis of Anomalous in Situ IR Spectra
Aakash Varambhia, Philip A. Ash, Robert M. J. Jacobs, Kylie A. Vincent, Lewys Jones, Ian J. McPherson
The oxidation of adsorbed CO is a key reaction in electrocatalysis. It has been studied extensively on both extended model surfaces and on nanoparticles; however, correlation between the two is far from simple. Molecular insight into the reaction is often provided using in situ IR spectroscopy; however, practical challenges mean in situ studies on nanoparticles have yet to provide the same level of detail as those on model surfaces. Here we use a new approach to in situ IR spectroscopy to study the mechanism of CO adlayer oxidation on a commercial carbon-supported Pt catalyst. We observe bipolar IR absorption bands but develop a simple model to enable fitting. Quantitative analysis of band behavior during the oxidation prepeak using the model agrees well with previous analysis based on conventional absorption bands. A second linear CO band is observed during the main oxidation region and is assigned to the distinct contribution of CO on step as opposed to terrace sites. Analysis of the step and terrace CO bands during oxidation shows that oxidation begins on the terraces of the nanoparticles before CO on steps is removed. Further correlation of this behavior with the current shows that step CO is only lost in the first of the two main oxidation peaks.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b02166

DOI: 10.1021/acs.jpcc.7b02166

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.