5 years ago

Shallow Representation Learning via Kernel PCA Improves QSAR Modelability

Shallow Representation Learning via Kernel PCA Improves QSAR Modelability
Russ B. Altman, Stefano E. Rensi
Linear models offer a robust, flexible, and computationally efficient set of tools for modeling quantitative structure–activity relationships (QSARs) but have been eclipsed in performance by nonlinear methods. Support vector machines (SVMs) and neural networks are currently among the most popular and accurate QSAR methods because they learn new representations of the data that greatly improve modelability. In this work, we use shallow representation learning to improve the accuracy of L1 regularized logistic regression (LASSO) and meet the performance of Tanimoto SVM. We embedded chemical fingerprints in Euclidean space using Tanimoto (a.k.a. Jaccard) similarity kernel principal component analysis (KPCA) and compared the effects on LASSO and SVM model performance for predicting the binding activities of chemical compounds against 102 virtual screening targets. We observed similar performance and patterns of improvement for LASSO and SVM. We also empirically measured model training and cross-validation times to show that KPCA used in concert with LASSO classification is significantly faster than linear SVM over a wide range of training set sizes. Our work shows that powerful linear QSAR methods can match nonlinear methods and demonstrates a modular approach to nonlinear classification that greatly enhances QSAR model prototyping facility, flexibility, and transferability.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.6b00694

DOI: 10.1021/acs.jcim.6b00694

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.