5 years ago

FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity

FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity
Conrad Stork, Johannes Kirchmair, Christina de Bruyn Kops, Martin Šícho, Daniel Svozil
We report on the further development of FAst MEtabolizer (FAME; J. Chem. Inf. Model. 2013, 53, 2896–2907), a collection of random forest models for the prediction of sites of metabolism (SoMs) of xenobiotics. A broad set of descriptors was explored, from simple 2D descriptors such as those used in FAME, to quantum chemical descriptors employed in some of the most accurate models for SoM prediction currently available. In line with the original FAME approach, our objective was to keep things simple and to come up with accurate and robust models that are based on a small number of 2D descriptors. We found that circular descriptions of atoms and their environments with such descriptors in combination with an extremely randomized trees algorithm can yield models that perform equally well compared to more complex approaches. Thorough evaluation experiments on an independent test set showed that the best of these models obtained a Matthews correlation coefficient, area under the receiver operating characteristic curve, and Top-2 accuracy of 0.57, 0.91 and 94.1%, respectively. Models for the prediction of isoform-specific regioselectivity of CYP 3A4, 2D6, and 2C9 were also developed and showed competitive performance. The best models have been integrated into a newly developed software package (FAME 2), which is available free of charge from the authors.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00250

DOI: 10.1021/acs.jcim.7b00250

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.