3 years ago

Origins of coevolution between residues distant in protein 3D structures [Biophysics and Computational Biology]

Origins of coevolution between residues distant in protein 3D structures [Biophysics and Computational Biology]
David Baker, Sergey Ovchinnikov, Ivan Anishchenko, Hetunandan Kamisetty

Residue pairs that directly coevolve in protein families are generally close in protein 3D structures. Here we study the exceptions to this general trend—directly coevolving residue pairs that are distant in protein structures—to determine the origins of evolutionary pressure on spatially distant residues and to understand the sources of error in contact-based structure prediction. Over a set of 4,000 protein families, we find that 25% of directly coevolving residue pairs are separated by more than 5 Å in protein structures and 3% by more than 15 Å. The majority (91%) of directly coevolving residue pairs in the 5–15 Å range are found to be in contact in at least one homologous structure—these exceptions arise from structural variation in the family in the region containing the residues. Thirty-five percent of the exceptions greater than 15 Å are at homo-oligomeric interfaces, 19% arise from family structural variation, and 27% are in repeat proteins likely reflecting alignment errors. Of the remaining long-range exceptions (<1% of the total number of coupled pairs), many can be attributed to close interactions in an oligomeric state. Overall, the results suggest that directly coevolving residue pairs not in repeat proteins are spatially proximal in at least one biologically relevant protein conformation within the family; we find little evidence for direct coupling between residues at spatially separated allosteric and functional sites or for increased direct coupling between residue pairs on putative allosteric pathways connecting them.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.