3 years ago

Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni(OH)2/graphite electrode [Chemistry]

Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni(OH)2/graphite electrode [Chemistry]
Manjeet Chhetri, C. N. R. Rao, Salman Sultan

Electrochemical dual-pulse plating with sequential galvanostatic and potentiostatic pulses has been used to fabricate an electrocatalytically active Ni/Ni(OH)2/graphite electrode. This electrode design strategy to generate the Ni/Ni(OH)2 interface on graphite from Ni deposits is promising for electrochemical applications and has been used by us for hydrogen generation. The synergetic effect of nickel, colloidal nickel hydroxide islands, and the enhanced surface area of the graphite substrate facilitating HO–H cleavage followed by H(ad) recombination, results in the high current density [200 mA/cm2 at an overpotential of 0.3 V comparable to platinum (0.44 V)]. The easy method of fabrication of the electrode, which is also inexpensive, prompts us to explore its use in fabrication of solar-driven electrolysis.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.