5 years ago

3D Printed Electrodes for Detection of Nitroaromatic Explosives and Nerve Agents

3D Printed Electrodes for Detection of Nitroaromatic Explosives and Nerve Agents
Adriano Ambrosi, Cavin Tan, Martin Pumera, Muhammad Zafir Mohamad Nasir
Three-dimensional (3D) printing has proven to be a versatile and useful technology for specialized applications in industry and also for scientific research. We demonstrate its potential use toward the electrochemical detection of nitroaromatic compounds 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and fenitrothion (FT). The detection of these compounds is of utmost importance in military and forensic applications. Stainless steel electrodes were fabricated by 3D printing, and the surface was electroplated with gold. The electrochemical performance of the 3D printed electrodes was compared to that of the conventionally employed glassy carbon electrode (GCE) and proved to be more sensitive toward the detection of all three nitroaromatic compounds. 3D printing of customizable electrodes provides a viable alternative to traditional electrodes for the analysis of samples with electrochemical methods.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01614

DOI: 10.1021/acs.analchem.7b01614

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.