3 years ago

Identification of Cav2-PKC{beta} and Cav2-NOS1 complexes as entities for ultrafast electrochemical coupling [Biophysics and Computational Biology]

Identification of Cav2-PKC{beta} and Cav2-NOS1 complexes as entities for ultrafast electrochemical coupling [Biophysics and Computational Biology]
Catrin S. Muller, Cristina E. Constantin, Uwe Schulte, Michael G. Leitner, Dominik Oliver, Wolfgang Bildl, Bernd Fakler

Voltage-activated calcium (Cav) channels couple intracellular signaling pathways to membrane potential by providing Ca2+ ions as second messengers at sufficiently high concentrations to modulate effector proteins located in the intimate vicinity of those channels. Here we show that protein kinase Cβ (PKCβ) and brain nitric oxide synthase (NOS1), both identified by proteomic analysis as constituents of the protein nano-environment of Cav2 channels in the brain, directly coassemble with Cav2.2 channels upon heterologous coexpression. Within Cav2.2–PKCβ and Cav2.2–NOS1 complexes voltage-triggered Ca2+ influx through the Cav channels reliably initiates enzymatic activity within milliseconds. Using BKCa channels as target sensors for nitric oxide and protein phosphorylation together with high concentrations of Ca2+ buffers showed that the complex-mediated Ca2+ signaling occurs in local signaling domains at the plasma membrane. Our results establish Cav2–enzyme complexes as molecular entities for fast electrochemical coupling that reliably convert brief membrane depolarization into precisely timed intracellular signaling events in the mammalian brain.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.