3 years ago

Drifting of heme-coordinating group in imidazolylmethylxanthones leading to improved selective inhibition of CYP11B1

Drifting of heme-coordinating group in imidazolylmethylxanthones leading to improved selective inhibition of CYP11B1
An abnormal increase in glucocorticoid levels is responsible for pathological disorders affecting different organs and systems, and the selective inhibition of appropriate steroidogenic enzymes represents a validated strategy to restore their physiological levels. In continuing our studies on CYP11B inhibitors, in this paper a small series of 6-substituted 3-imidazolylmethylxanthones was designed and synthesized, according to the data acquired from previously reported series of derivatives and from a purposely-performed docking study. The new compounds proved to be potent inhibitors of CYP11B isoforms, being effective on CYP11B1 in the low nanomolar range and improving selectivity with respect to CYP11B2, compared to previously reported related compounds. These data further confirmed that a suitable mutual arrangement of the imidazolylmethyl pharmacophore and a properly selected substituent on the xanthone core allows a fine tuning of the activity towards the different CYPs and further corroborate the role of the xanthone scaffold as a privileged structure in this field.

Publisher URL: www.sciencedirect.com/science

DOI: S0223523417306001

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.