3 years ago

Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

R. Feidenhans’l, H. O. Sørensen, M. H. M. Olsson, S. L. S. Stipp, N. Bovet, S. S. Hakim, J. Bohr
The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10.4} surfaces. We used X-ray reflectivity (XRR) to study calcite {10.4} surfaces that were prepared in three alcohols: methanol, isopropanol and pentanol and one carboxylic acid: octanoic acid. All molecules adsorbed in self-assembled layers, where thickness depended on the density and the length of the molecule. For methanol and isopropanol, molecular dynamic simulations (MD) provided complementary information, which allowed us to develop a surface model. Branching in isopropanol induced slightly less ordering because of the additional degree of freedom. Pentanol and octanoic acid adsorbed as single monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound.

Publisher URL: https://www.nature.com/articles/s41598-017-06977-4

DOI: 10.1038/s41598-017-06977-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.