5 years ago

Ca2+ detection utilising AlGaN/GaN transistors with ion-selective polymer membranes

Ca2+ detection utilising AlGaN/GaN transistors with ion-selective polymer membranes
We demonstrate highly selective and sensitive potentiometric ion sensors for calcium ion detection, operated without the use of a reference electrode. The sensors consist of AlGaN/GaN heterostructure-based transistor devices with chemical functionalisation of the gate area using poly (vinylchloride)-based (PVC) membranes having high selectivity towards calcium ions, Ca2+. The sensors exhibited stable and rapid responses when introduced to various concentrations of Ca2+. In both 0.01 M KCl and 0.01 M NaCl ionic strength buffer solutions, the sensors exhibited near Nernstian responses with detection limits of less than 10−7 M, and a linear response range between 10−7 - 10−2 M. Also, detection limits of less than 10−6 M were achieved for the sensors in both 0.01 M MgCl2 and 0.01 M LiCl buffer solutions. AlGaN/GaN-based devices for Ca2+ detection demonstrate excellent selectivity and response range for a wide variety of applications. This work represents an important step towards multi-ion sensing using arrays of ion-selective field effect transistor (ISFET) devices.

Publisher URL: www.sciencedirect.com/science

DOI: S000326701730870X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.