5 years ago

Photoinduced Charge Transfer versus Fragmentation Pathways in Lanthanum Cyclopentadienyl Complexes

Photoinduced Charge Transfer versus Fragmentation Pathways in Lanthanum Cyclopentadienyl Complexes
Bakhtiyor Rasulev, Qingguo Meng, P. Stanley May, Yulun Han, Dmitri S. Kilin, Mary T. Berry
This study compares two competing pathways of photoexcitations in gas-phase metal–organic complexes: first, a sequence of phonon-assisted electronic transitions leading to dissipation of the energy of photoexcitations and, second, a sequence of light-driven electronic transitions leading to photolysis. Phonon-assisted charge carrier dynamics is investigated by combination of the density matrix formalism and on-the-fly nonadiabatic couplings. Light-driven fragmentation is modeled by a time-dependent excited-state molecular-dynamics (TDESMD) algorithm based on Rabi theory and principles similar to the trajectory surface hopping approximation. Numerical results indicate that, under the medium intensity of the laser field, light-driven electronic transitions are more probable than phonon-assisted ones. The formation of multiple products is observed in TDESMD trajectories. Simulated mass spectra are extracted from TDESMD simulations and compared to experimental photoionization time-of-flight (PI-TOF) mass spectra. It is found that several features in the experimental mass spectra are reproduced by the simulations.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00050

DOI: 10.1021/acs.jctc.7b00050

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.