4 years ago

Noninvasive Substitution of K+ Sites in Cyclodextrin Metal–Organic Frameworks by Li+ Ions

Noninvasive Substitution of K+ Sites in Cyclodextrin Metal–Organic Frameworks by Li+ Ions
Omar K. Farha, J. Fraser Stoddart, Hasmukh A. Patel, Avik Samanta, Siva Krishna Mohan Nalluri, Timur Islamoglu, Christos D. Malliakas, Zhichang Liu, Ommid Anamimoghadam
Co-crystallization of K+ and Li+ ions with γ-cyclodextrin (γ-CD) has been shown to substitute the K+ ion sites partially by Li+ ions, while retaining the structural integrity and accessible porosity of CD-MOF-1 (MOF, metal–organic framework). A series of experiments, in which the K+/Li+ ratio was varied with respect to that of γ-CD, have been conducted in order to achieve the highest possible proportion of Li+ ions in the framework. Attempts to obtain a CD-MOF containing only Li+ ions resulted in nonporous materials. The structural occupancy on the part of the Li+ ions in the new CD-MOF has been confirmed by single-crystal X-ray analysis by determining the vacancies of K+-ion sites and accounting for the cation/γ-CD ratio in CD-MOF-1. The proportion of Li+ ions has also been confirmed by elemental analysis, whereas powder X-ray diffraction has established the stability of the extended framework. This noninvasive synthetic approach to generating mixed-metal CD-MOFs is a promising method for obtaining porous framework unattainable de novo. Furthermore, the CO2 and H2 capture capacities of the Li+-ion-substituted CD-MOF have been shown to exceed the highest sorption capacities reported so far for CD-MOFs.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06287

DOI: 10.1021/jacs.7b06287

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.