5 years ago

Improving Accuracy, Diversity, and Speed with Prime Macrocycle Conformational Sampling

Improving Accuracy, Diversity, and Speed with Prime Macrocycle Conformational Sampling
Shana L. Posy, Dan Sindhikara, Steven A. Spronk, Daniel L. Cheney, Ken Borrelli, Tyler Day
A novel method for exploring macrocycle conformational space, Prime macrocycle conformational sampling (Prime-MCS), is introduced and evaluated in the context of other available algorithms (Molecular Dynamics, LowModeMD in MOE, and MacroModel Baseline Search). The algorithms were benchmarked on a data set of 208 macrocycles which was curated for diversity from the Cambridge Structural Database, the Protein Data Bank, and the Biologically Interesting Molecule Reference Dictionary. The algorithms were evaluated in terms of accuracy (ability to reproduce the crystal structure), diversity (coverage of conformational space), and computational speed. Prime-MCS most reliably reproduced crystallographic structures for RMSD thresholds >1.0 Å, most often produced the most diverse conformational ensemble, and was most often the fastest algorithm. Detailed analysis and examination of both typical and outlier cases were performed to reveal characteristics, shortcomings, expected performance, and complementarity of the methods.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00052

DOI: 10.1021/acs.jcim.7b00052

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.