3 years ago

The Deformations of Carbon Nanotubes under Cutting

The Deformations of Carbon Nanotubes under Cutting
Renchao Che, Zhiyong Pan, Peining Chen, Hao Wu, Bo Zhang, Hong Sun, Chao Wang, Longbin Qiu, Guozhen Guan, Huisheng Peng, Jue Deng, Hao Sun
The determination of structural evolution at the atomic level is essential to understanding the intrinsic physics and chemistries of nanomaterials. Mechanochemistry represents a promising method to trace structural evolution, but conventional mechanical tension generates random breaking points, which makes it unavailable for effective analysis. It remains difficult to find an appropriate model to study shear deformations. Here, we synthesize high-modulus carbon nanotubes that can be cut precisely, and the structural evolution is efficiently investigated through a combination of geometry phase analysis and first-principles calculations. The lattice fluctuation depends on the anisotropy, chirality, curvature, and slicing rate. The strain distribution further reveals a plastic breaking mechanism for the conjugated carbon atoms under cutting. The resulting sliced carbon nanotubes with controllable sizes and open ends are promising for various applications, for example, as an anode material for lithium-ion batteries.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b04130

DOI: 10.1021/acsnano.7b04130

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.