3 years ago

An insight into the effects of B-site transition metals on the activity, activation effect and stability of perovskite oxygen electrodes for solid oxide electrolysis cells

An insight into the effects of B-site transition metals on the activity, activation effect and stability of perovskite oxygen electrodes for solid oxide electrolysis cells
Here, effects of B-site transition metals (TMs) in the (La0.6Sr0.4)XO3-δ (X = Mn, Fe, Co) perovskite structure on the activity and stability of the oxygen electrodes during high temperature electrolysis are discussed to provide a deep understanding of the phenomena observed for different oxygen electrodes under anodic polarizations. Performance and stability of the electrodes vary significantly at 800 °C as the TMs changed from Mn to Fe and Co, which is attributed to the different ionic conductivities and surface chemistry of the materials that have a strong dependence on the valence state and electronic structure of TMs. Under an anodic current passage of 200 mA cm−2 at 800 °C, electrode polarization resistance (R E) and overpotential (η) of the (La0.6Sr0.4)MnO3-δ (LSM) electrode decrease significantly by 1.75 Ω cm2 and 101 mV during the 1200 min test, compared with the constant values of R E and η for the (La0.6Sr0.4)FeO3-δ (LSF) and (La0.6Sr0.4)CoO3-δ (LSC) electrodes, an indication of the influence of B-site TMs on the electrode performance and stability. Most serious degradation is observed at the (La0.6Sr0.4)MnO3-δ electrode due to the electrode detachment arising from the accelerated SrO surface segregation and related disintegration of LSM particles near the electrode/electrolyte interface.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317310248

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.