3 years ago

Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents

Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents
Alzheimer's Disease (AD) is a neurodegenerative brain disorder in which many biological dysfunctions are involved. Among them, two main types of lesions were discovered and widely studied: the amyloid plaques and the neurofibrillary tangles (NFTs). These two lesions are caused by the dysfunction and the accumulation of two proteins which are, respectively, the beta-amyloid peptide and the tau protein. The process that leads these two proteins to aggregate is complex and is the subject of current studies. After a brief description of the aggregation mechanisms, we will provide an overview of new therapeutic agents targeting the different dysfunctions and toxic species found during aggregation.

Publisher URL: www.sciencedirect.com/science

DOI: S0223523417305925

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.