5 years ago

Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors

Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors
Phosphatidylinositol 3-kinase (PI3K) is a pivotal regulator of intracellular signaling pathways and considered as a promising target in the development of a therapeutic treatment of cancer. Among the different PI3K subtypes, the PIK3CA gene encoding PI3K p110α is frequently mutated and overexpressed in majority of human cancers. Therefore, the inhibition of PI3Kα has been considered to be an efficient approach for the treatment of cancer. In this study, two series compounds containing hydrophilic group in imidazo[1,2-a]pyridine and quinazolin-4(3H)-one were synthesized and their antiproliferative activities against five cancer cell lines, including HCT-116, SK-HEP-1, MDA-MB-231, SNU638 and A549, were evaluated. Compound 1i with most potent antiproliferative activity was selected for further biological evaluation. PI3K kinase assay showed that 1i has selectivity for PI3Kα distinguished from other isoforms. The western blot assay indicated that 1i is more effective than HS-173, an imidazopyridine-based PI3Ka inhibitor, in reducing the levels of phospho-Akt. All these results suggested that 1i is a potent PI3Kα inhibitor and could be considered as a potential candidate for the development of anticancer agents.

Publisher URL: www.sciencedirect.com/science

DOI: S0223523417305962

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.