4 years ago

Effect of solvent quality and humidity on the porous formation and oil absorbency of SAN electrospun nanofibers

Effect of solvent quality and humidity on the porous formation and oil absorbency of SAN electrospun nanofibers
Mohammad Reza Moghbeli, Alireza Bandegi
In this study, nanofibrous mat with high oil sorption capability was prepared via one-step electrospinning process without any further post-treatments. For this purpose, the fabrication of styrene/acrylonitrile copolymer nanofibers was carried out using various dimethylformamide (DMF)/tetrahydrofuran and DMF/ethanol (DMF/EtOH) binary mixture ratios in an electrospining atmosphere with various relative humidity (RH) levels. Scanning electron microscope micrographs showed that DMF/tetrahydrofuran and DMF/EtOH ratio and RH value could considerably affect the diameter, surface, and interior morphology of the resultant nanofibers. The nanofiber morphology was dependent upon the polymer/solvent(s)/water ternary phase diagram behavior. In overall, the partial hydrophilicity of styrene/acrylonitrile copolymer resulted in electrospun nanofibers with wrinkled surface. In addition, the incorporation of nonsolvent in the spinning solution and using high RH atmosphere forced the polymeric solution jet to intensively phase separate and, therefore, produce the nanofibers with highly interior porous structure during drying process. The maximal capacity and rate of oil sorption (170 g/g) was observed for the nanofibrous mat prepared using EtOH/DMF (2/3: vol/vol) and RH value of 60% showing the highest internal porosity. The results showed that the oil sorption capability and mechanical strength of the fibrous mat are strongly dependent on nanofibers diameter and porous structure, which can be controlled through adjusting the RH and spinning solvent quality. The electrospun mat with highest Young's modulus (7.68 MPa) was prepared using EtOH/DMF (2/3) binary mixture and RH value of 45%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45586.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45586

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.